Cut rock samples from the Rio Grande Rise show Fe-Mn crusts (black and gray) growing on various types of iron-rich substrate rocks (pale to dark brown). Photo credit: Kira Mizell, USGS.

A lost continent, rich in cobalt crusts, could create a challenging precedent for mineral extraction in the high seas.

[This article originally appeared yesterday in the Deep-sea Mining Observer. ~Ed.]

The Rio Grande Rise is an almost completely unstudied, geologically intriguing, ecologically mysterious, potential lost continent in the deep south Atlantic. And it also hosts dense cobalt-rich crusts.

The Rio Grande Rise is a region of deep-ocean seamounts roughly the area of Iceland in the southwestern Atlantic. It lies west of the Mid-Atlantic Ridge off the coast of South America and near Brazil’s island territories. As the largest oceanic feature on the South American plate, it straddles two microplates. And yet, like much of the southern Atlantic deep sea, it is relatively under sampled.

Almost nothing is known about the ecology or biodiversity of the Rio Grande Rise.

Read More

All the slime that sticks, we print: 2018 in Hagfish Research

Hagfish. You love them. I love them. Of all the fish in all the seas, none are more magnificent than the hagfish. Across the world, children celebrate the hagfish by making slime from Elmer’s glue, their own mucous, or just, like, something. Seriously, how is is that toddler hands are always coated in some strange, unidentifiable slime?

And never, ever forget:

Your car has just been crushed by hagfish: Frequently Asked Questions.

2018 was a big year in hagfish science. Below are just a few of my favorite studies.

Biogeography

A hagfish in the high Antarctic? Hagfish have previously never been observed in the shallow waters around Antarctic, but a photograph from 1988 was determined this year to be a hagfish feeding on a large pile of clam sperm in shallow water. Neat!

Possible hagfish at 30 m in Salmon Bay in 1988. The white patch is Laternula elliptica sperm.

Incidentally, the reason the photo languished for so long is that it was originally though to be a Nemertean. Because Antarctic Nemertean worms are huge and horrifying.

Read More

I built a head-mounted LiDAR array that lets you see the world like a dolphin via vibrations sent through your jaw.

I’m Andrew Thaler and I build weird things.

Last month, while traveling to Kuching for Make for the Planet Borneo, I had an idea for the next strange ocean education project: what if we could use bone-conducting headphones to “see” the world like a dolphin might through echolocation?

The author wearing a head mounted LiDAR array, looking very pensive.

Spoilers: You can. Photo by A. Freitag.

Bone-conducting headphones use speakers or tiny motors to send vibrations directly into the bone of you skull. This works surprisingly well for listening to music or amplifying voices without obstructing the ear. The first time you try it, it’s an odd experience. Though you hear the sound just fine, it doesn’t feel like it’s coming through your ears. Bone conduction has been used for a while now in hearing aids as well as military- and industrial-grade communications systems, but the tech has recently cropped up in sports headphones for people who want to listen to music and podcasts on a run without tuning out the rest of the world. Rather than anchoring to the skull, the sports headphones sit just in front of the ear, where your lower jaw meets your skull.

This is not entirely unlike how dolphins (and at least 65 species of toothed whales) detect sound.  Read More

A year of snot-oozing, carcass-scavenging, slime eels: Hagfish Science in 2017.

Hagfish. You love them. I love them. The owner of this sedan has no choice but to love them:

Photo courtesy Oregon State Police.

2017 was a big year for hagfish science.

Big Ideas (the ecologic paradigms that hagfish shifted) 

Heincke’s law is one of those ecologic principles that more often acts as a foil for rejecting the null hypothesis than as a consistent pattern in ecology. It’s most basic summary is: The further from shore and the deeper dwelling a fish is, the bigger it grows. Heincke’s law does not appear to be true for hagfish, whose size appear to have no relation to the depth at which they occur. On the other hand, phylogenetic relationships do seem to play some role in regulating body size in hagfish.

Defense and Behavior (how hagfish do the things that they do)

Hagfish are master escape artists, capable of squeezing in and out of tight spaces barely half the width of their body. This great for getting in an out of rotting whale carcasses on the sea floor, creeping into crevices, and avoiding predators. But how do they accomplish this incredible feat? Hagfish have a flaccid sinus under their skin which allows them to control the distribution of venous blood and alter their body width as they wriggle through narrow passages. Freedman and Fudge identified 9 distinct behaviors which take advantage of this adaptation, including anchoring, forming tight loops to push the body through an opening, and bending the hagfish head 90 degrees to force it through a slit. And there are videos!

The Fudge lab has been busy this year, cranking out some of the most noteworthy work on the incredible behavior of hagfish. In addition to examining hagfish motility, Boggett and friends looked into how those flaccid sinuses aid predator avoidance. The team build wee little guillotines loaded with shark teeth to see how hagfish skin protects the animal from vicious bites. In a year when a truckload of hagfish spectacularly crushed a car, the fact that this research was the biggest breakout sensation in hagfish pop culture says everything you need to know about the compelling results of this study. You can read more about this study at The Verge, Futurity, Popular Science, and plenty of other outlets.

Read More

Fun Science FRIEDay – Think water comes in just liquid, ice and gas? Think again!

One of the most basic things that we learn when growing up is that water can exist in 3 different states of matter: as a gas (water vapor), as a liquid (water… water), and as a solid (ice). This basic and fundamental concept has recently been turned upside down as scientist have discovered that water might also exists in a fourth state; liquid water it appears might actually come in two different states. A collaborative team of researchers led by Dr. Laura Maestro at Oxford University, found that the  physical properties of water changed their behavior between 50 and 60℃ potentially changing to a second physical state of water.

(Photo credit: Pixabay/Public Domain Pictures via CC0 Public Domain)

Read More

Fun Science FRIEDay – Embryonic Gene Editing

The world we currently live in would have seemed like science fiction to humans in the not to distant past. Everyday more and advancements transform sci-fi dreams into reality. Most recently gene editing of human embryos has been birthed into the realm of possibility (cheesy pun intended!). In theory gene editing embryos could allow you to choose preferential traits in your soon to be human flesh-blob. That level of ability does not currently exist, but the latest developments in gene editing are still pretty astonishing.

Eggs before gene editing (left), and eggs after gene editing and already undergoing cell division (right)
(Photo credit: Ma et al. 2017)

In a recent study scientists took a human embryo and edited a dangerous mutation from the genes of that embryo; human reality, meet science fiction. Scientists at Oregon Health and Science University, with colleagues in California, China and South Korea, edited embryos, fixing a mutation that causes a common heart condition that can lead to sudden death later in life. The biggest hurdles were producing embryos in which all cells, not just some, were mutation-free, while also avoiding creating unwanted extra mutations during the process. The researchers found that when gene-editing components were introduced with sperm to the egg before fertilization, the success of the process was markedly different from previous approaches. If embryos with the repaired mutation were allowed to develop into babies, they would not only be disease-free but would also not transmit the disease to their descendants.

Read More

Fun Science FRIEDay – Underwater World of Pollination

Pollination. I think most people understand why this is important (or maybe I should say, I hope). To put it simply, the process of pollination facilitates reproduction in plants by transferring pollen from one plant to another. In the terrestrial world, this can be mediated by physical forcing (e.g., wind) or by animals (e.g., insects) – and its why people are freaking out about the loss of bees due to pesticides (because they are a primary pollinator), but I digress. Until relatively recently, pollination by animals was not thought to occur in the ocean. Unlike on land, where most flowering plants rely on creatures to carry pollen, plant reproduction in an aquatic world was surmised to rely exclusively on currents and tides. However, a team of researchers led by marine biologist Brigitta van Tussenbroek revoked the long standing paradigm that pollen in the sea is transported only by water, discovering and documenting the process of zoobenthophilous pollination (a term they coined).

Gamarid amphipod feeding on pollen or mucilage of a male flower of the seagrass Thalassia testudinum at night. (Photo credit: Tussenbroek et al. 2012)

Gamarid amphipod feeding on pollen of a male
flower of the seagrass Thalassia testudinum at night. (Photo credit: Tussenbroek et al. 2012)

Read More

Fun Science FRIEDay – Drug Resistant Bacteria, The Movie

In today’s FSF we bring you both a jaw dropping, and somewhat terrifying cinematic visualization of how bacteria evolve resistance to antibiotics, and overtime can become super bugs immune to any antibiotic treatment.  A concise and detailed description is presented below:

This stunning video of evolution in action captures how bacteria with no resistance to an antibiotic can in a very short time become resistant to concentrations of more than a thousand times the initial concentration. Other scientists have documented this phenomenon before, but never with such vivid clarity as that provided by Michael Bay and Roy Kishony of Harvard University.

Read More

Fun Science FRIEDay – Shark Daycare

A great white shark nursery in the North Atlantic that was discovered in 1985 south of Cape Cod in the waters off Montauk, New York  has received renewed attention due to the increased activity of white sharks off cape cod in recent years. The nursery was first documented in 1985 by Casey and Pratt who deduced the presence of a nursery based on the number of juvenile sightings and landings in the area. This work was followed up recently  by OCEARCH (an organization dedicated to generating scientific data related to tracking/telemetry and biological studies of keystone marine species such as great white sharks), which tagged and tracked nine infant great whites to the nursery, located a few miles off Montauk.

Great White Shark. Image courtesy animals.NationalGeographic.com

Great White Shark. Image courtesy animals.NationalGeographic.com

Photo of a great white shark in Mexico by Terry Goss, WikiMedia Commons. http://commons.wikimedia.org/wiki/File:White_shark.jpg

Photo of a great white shark in Mexico by Terry Goss, WikiMedia Commons. http://commons.wikimedia.org/wiki/File:White_shark.jpg

 

 

 

 

 

 

Read More

Fun Science FRIEDay – The worlds largest sponge.

Recently a team of scientists on a deep sea expedition in the Northwestern Hawaiian Islands aboard the R/V Okeanos Explorer made a monumental discovery… pun intended. While exploring the depths of the seafloor in Papahānaumokuākea Marine National Monument, with their remotely operated vehicles (ROV) Seirios and Deep Discover, they discovered and documented the largest sponge ever observed on this planet… or any planet for that matter.

Large hexactinellid sponge found in Papahānaumokuākea Marine National Monument (Photo credit: NOAA's Office of Exploration and Research)

Large hexactinellid sponge found in Papahānaumokuākea Marine National Monument (Photo credit: NOAA’s Office of Exploration and Research)

Lateral view of a large hexactinellid sponge found in Papahānaumokuākea Marine National Monument (Photo credit: NOAA's Office of Exploration and Research)

Lateral view of a large hexactinellid sponge found in Papahānaumokuākea Marine National Monument
(Photo credit: NOAA’s Office of Exploration and Research)

 

 

 

 

 

 

Read More