I asked 15 ocean plastic pollution experts about the Ocean Cleanup project, and they have concerns

The online ocean science community has been vocally skeptical about the Ocean Cleanup, a device that aims to physically remove plastic pollution from the ocean. Drs. Kim Martini and Miriam Goldstein published a technical review of its feasibility over at Deep Sea News, and Andrew asked some important questions that have yet to be answered. Also, be sure to read environmental journalist Chris Clarke’s thorough overview of these concerns.

Overall concerns include a lack of understanding of the problem (including but not limited to the fact that much of the harmful ocean plastic is small and well-dispersed), insufficient structural integrity for a large object that will be deployed in the open ocean (which would result in the object breaking and creating even more ocean garbage), and the fact that this device is designed to aggregate objects of a certain size to remove them from the water but cannot distinguish between plastic and living things.

Mainstream media coverage has been noticeably less critical of the Ocean Cleanup, often presenting the idea as revolutionary and it’s creator as a genius.

Artist’s conception of the Ocean Cleanup, from TheOceanCleanup.com

I am not an expert in ocean plastic pollution. However, the uncritical tone of most mainstream media coverage of the Ocean Cleanup does not seem to correspond with my impression of expert opinion on this matter from speaking with expert colleagues who study this.

Through professional contacts, I developed a list of 51 ocean plastic pollution experts who work in academia, government, and the environmental non-profit sector, and I sent them some questions about the Ocean Cleanup. 15 (4 in academia, 5 each in government and the non-profit sector, and 1 in industry) agreed to participate in an anonymous survey. While this is not (and not intended to be) an exhaustive survey of the entire field of ocean plastic pollution, the broad agreement among a diverse group of experts is telling. Below, please see what they had to say through some representative quotes. Some respondents chose to provide an on-the-record quote, while many chose to remain anonymous out of concerns about reprisal.

I also asked Lonneke Holierhoek, COO of the Ocean Cleanup, to respond to these concerns. Her comments are included in each section.

Read More

Fun Science FRIEDay – Open-Acess Science for the Masses

The oceans belong to all of us. With this simple statement in mind, the Oceanography for Everyone (OfE) project was launched with the goal of making ocean science more accessible. One of the biggest hurdles in conducting ocean science is instrumentation costs, and 4 years ago the OfE team began trying to make one of the most basic ocean science tools, the CTD (a water quality sensor that measures Conductivity-Temperature-Depth), cheaper… much, much cheaper!

Read More

The Science of Aquaman: Understanding Dead Water

Update: legendary oceanographer Dr. Kim Martini stops by to set the record straight on the challenging subject of internal waves. Her comments in bold. 

It has been a long time since I’ve made an entry into our long-running, world-famous, Science of Aquaman series. The last few runs have been heavy on high adventure, but light on ocean tidbits for me to nerd out on. I don’t like to force ocean fact into comic fiction unless the opportunity presents itself.

So, with the newest run of Aquaman, starting with issue #50, focusing around a villain named Dead Water, I thought it was the perfect moment to talk about some physical oceanography. And then…

Dead Water. From Aquaman #51.

Dead Water. From Aquaman #51.

My hat’s off to Dan Abnett, who beat me to the science punchline. If I had to explain the phenomenon of dead water in a single tweet, it would have been pretty close to this. Well played, sir. Well played.

So what is dead water and why does it make maneuvering a vessel so challenging?

Read More

A 3D-printable, drone and ROV-mountable, water sampler

IMG_20150809_160734584_HDRThe Niskin bottle, a seemingly simple tube designed to take water samples at discrete depths, is one of the most important tools of oceanography. Coupled with a CTD, an array of Niskin bottles fit into the rosette, a Voltron-esque amalgamation of everything an oceanographer needs to profile the ocean. Niskin bottles are neither cheap nor particularly easy to use. A commercial rosette requires a decent-sized winch to launch and recover, which means you need a vessel and a crew to deploy. For Rogue Ecologist and citizen scientists, getting a high-quality, discrete water sample is a perpetual challenge. With tools like the OpenROV and the soon-to-be-completed EcoDrone, I wanted a Niskin bottle that was light weight and capable of being mounted on both underwater robots and quadcopters with ease.

Until now. 

After a few months of brainstorming and planning, I sat down this Friday and began building a 3D printable Niskin bottle that could be hand deployed or mounted on an OpenROV or drone. While this version is designed around a 1.25 inch acrylic tube, the trigger mechanism can be expanded to fit any size pipe. The trigger is driven by a waterproof servo developed by the good folks over at OpenROV. Everything else can either be purchased off-the-shelf or printed on you home 3D printer. Later this month, I’ll be taking my prototypes out on the RV Blue Heron for field testing in Lake Superior.

Bill of Materials Read More

Three facts (and a lot of questions) about The Ocean Cleanup

The Ocean Cleanup is back in the news, with their first test deployment happening imminently off the coast of Japan. From reviews of their current material, it seems clear that they have not taken the critical assessment of their feasibility study, graciously provided pro-bono by Drs. Martini and Goldstein, to heart. This is unfortunate. As the project has progressed, many in the ocean science and conservation community have not only grown more skeptical of its effectiveness, but are increasingly wary of the potential this project has to cause significant environmental harm. As of yet, The Ocean Cleanup has presented no formal Environmental Impact Assessment, a critical document which would provide the data necessary to properly gauge the potential for environmental harm from large-scale engineering projects.

Image produced by The Ocean Cleanup.

Image produced by The Ocean Cleanup.

Goldstein and Martini’s technical review is essential reading for anyone tracking the progress of The Ocean Cleanup, but there are many additional issues that the Ocean Cleanup has not yet addressed. Here, I present three issues related to the construction and operation of The Ocean Cleanup and the necessary information that, were I in charge of regulating the high seas, would need to know before such a project could be approved.

1. The Ocean Cleanup will be the largest offshore structure ever assembled. 

When completed, The Ocean Cleanup will span 100 km of open sea with a massive array of booms and moored platforms. If successfully constructed in the proposed region, the mooring used will be the deepest ever constructed. The booms will stretch across a major oceanic current, interacting with plankton transport and pelagic migrations.

What I want to know: How will The Ocean Cleanup monitor changes in ocean-wide population structure? What community baselines have been established from which ecosystem impact can be assessed? What contingency are in place should catastrophic failure occur? Ultimately, what chronic threshold will be used to trigger a shutdown of the Ocean Cleanup, should major environmental impacts be detected as a result of standard operation, who will access to the data necessary to monitor those impacts, and who will have authority to trigger a shutdown? Read More

Dipping a Toe in the Confluence

North Carolina is well known for both its distinctive barrier islands (making Pamlico Sound the largest lagoon in the U.S.) and highly productive fisheries.  Both of these features exist in large part because North Carolina sits that the point where two of the largest ocean currents in the Atlantic meet. From the north, the Labrador Current meanders from the Arctic Circle along the Canadian, New England, and Mid-Atlantic shorelines and crashes into the Gulf Stream at Cape Hatteras, deflecting this warm current off its own shore-hugging course from the south and out across the Atlantic Ocean.  Aside from literally defining the shape of the Outer Banks, the collision zone represents the boundary between temperate waters to the north and subtropical waters to the south.  This presence of this border means that, depending on the time of year and local weather conditions, you can catch just about any marine fish native to the Northwest Atlantic Ocean off of the Outer Banks.

This satellite image of sea surface temperatures shows the Gulf Stream (warm red current coming from the south) meeting the Labrador Current (cold purple current coming from the north). Image from Woods Hole Oceanographic Institute (whoi.edu).

Read More

Bioshock Oceanographic: How deep is Rapture?

“To build a city at the bottom of the sea! Insanity. But where else could we be free from the clutching hand of the Parasites? Where else could we build an economy that they would not try to control, a society that they would not try to destroy? It was not impossible to build Rapture at the bottom of the sea. It was impossible to build it anywhere else.”

Andrew Ryan, Bioshock

Rapture, a city beneath the sea, the crowning achievement of Randian industrialist Andrew Ryan. This atmospheric world of technological wonder and urban decay serves as the setting for one of the greatest video games of all time, Bioshock. The player, finding themselves stranded at sea in a fiery plane crash, makes their way towards a lonely lighthouse, descends into the sunken, desolate city, and unlocks the mysteries surrounding the creation and destruction of a most unusual city.

Rapture. From Bioshock.

Rapture. From Bioshock.

Though many questions are answered as the player journeys into the heart of Rapture, collecting audio diaries of its residents along the way, one question still eludes: How deep is Rapture and where, exactly, is it?

Read More

28 fallacies about the Fukushima nuclear disaster’s effect on the US West Coast

The Fukushima Daiichi nuclear power plant is back in the news, with recent reports of continued leaks. Coming on the heels of these new reports is a viral blog post entitled 28 Signs That The West Coast Is Being Absolutely Fried With Nuclear Radiation From Fukushima. The article is a paranoid, poorly reasoned attempt to link the tragedy of the Fukushima disaster to just about every environmental issue facing the US west coast in the last few months. At its best, it’s an illogical piece of post-modern absurdism. At its worst, its empirically false and intentionally misleading, rife with out-of-context quotes and cherry-picked data. The author had 28 chances to make a single reasonable point, and every single one rang hollow.

Of course it went viral.

Read More

Two weeks left to Support the OpenCTD and help us build an oceanographic tool for everyone!

Wow! Since we launched the OpenCTD we’ve raised nearly $4,000 to help develop an oceanographic tool the anyone can build. But $4,000 is only 40% of our funding goal, and we’ve got 12 days left to fund the rest of the project. If you believe in open source oceanography, think to tools of scientific research should be available to everyone, or just think a low-cost CTD would be a great addition to your research, teaching, or recreational activities, consider contributing to the OpenCTD. Even a few dollars will help us reach our goal.

Over the last month, I’ve talked to dozens of excited contributors with their own ideas for OpenCTD Projects. Here are a few of the most exciting:

  • Equip participants in catch-and-release fishing tournaments with an OpenCTD, so that they can take water column data and correlate it with presence of large pelagic fish. This would provide even greater insight into the movement, behavior, and migration patterns of hard-to-sample species.
  • Incorporate the OpenCTD into a SCUBA divers’ standard kit, so that your dive profile includes conductivity as well as temperature and depth. This would allow divers to discover local variability in the water column and correlate it with observations of marine life.
  • Affix the OpenCTD to commercial shrimp trawlers, so the fishermen can more accurately track the depth of their gear and determine which oceanographic conditions produce the best shrimp catches and the least by-catch.
  • Run an oceanographic “Big Year” challenge to promote open-source data by having private citizens compete to produce the most high-resolution data from a full seasonal cycle.
  • Put a CTD in every coast-, estuary-, river-, and lake-adjacent classroom, so that students have easy access to the tools necessary to explore their local aquatic ecosystems.

I want to see all of these projects, and more, come to fruition, but in order to make them happen, we need funding to finish developing the instrument. We have a proof-of-concept prototype, but through discussions with our donors and supporters, have developed even better systems to produce accurate, high-resolution data at low cost.

Oceanography for Everyone – Help us build a CTD!

Head over to our Rockethub Page for more information!

Conductivity, temperature, and depth (CTD). With these three measurements, marine scientists can unlock ocean patterns hidden beneath the waves. The ocean is not uniform, it its filled with swirling eddies, temperature boundaries, layers of high and low salinity, changing densities, and many other physical characteristics. To reveal these patterns, oceanographers use a tool called the CTD. A CTD is found on almost every major research vessel. Rare is the scientific expedition–whether it be coastal work in shallow estuaries or journeys to the deepest ocean trenches–that doesn’t begin with the humble CTD cast.

The CTD is not cheap. Commercial CTD’s start at more the $5,000 and can climb as high as $25,000 or more.

We believe that the prohibitive cost of a CTD is an unacceptable barrier to open science. The price tag excludes individuals and groups who lack research grants or significant private funds from conducting oceanographic research. We want to make this tool–the workhorse of oceanographic research–available to anyone with an interest in the oceans.

We’re building a CTD, but we need your help!

The ocean belongs to us all. Let’s ensure that we have access to the tools needed to study it.

Head over to our Rockethub Page for more information!