Fun Science FRIEDay – Resurrection

Life has unbelievably complex and diverse strategies to ensure survival. Organisms are able to go dormant during unfavorable conditions, and resuscitate once the environment becomes ideal again. This can play out over relatively short time periods such as when animals hibernate, or over longer periods where organisms can go into stasis, e.g. reviving bacteria from 250 million year old salt crystals.

Researchers in Russia recently thawed out permafrost sediment frozen for the past 42,000 years, and revealed once frozen and now living nematodes. Yes you heard that correctly, worms birthed and subsequently frozen during the Pleistocene (42,000 years earlier) were just resurrected in the 21st century. Frankenstein, eat your heart out.

Eophasma jurasicum, a fossilized nematode. (Photo credit: Ghedoghedo)

Read More

#JacquesWeek, Lionfish tax, coral that glows, accelerating climate change, and more! Monday Morning Salvage: July 10, 2017

Fog Horn (A Call to Action)

Flotsam (what we’re obsessed with right now)

Read More

This Week in the Deep

New and noteworthy publications in deep-sea science for the week of December 31st, 2012.

PLoS One: How Deep-Sea Wood Falls Sustain Chemosynthetic Life

Large organic food falls to the deep sea – such as whale carcasses and wood logs – are known to serve as stepping stones for the dispersal of highly adapted chemosynthetic organisms inhabiting hot vents and cold seeps. Here we investigated the biogeochemical and microbiological processes leading to the development of sulfidic niches by deploying wood colonization experiments at a depth of 1690 m in the Eastern Mediterranean for one year. Wood-boring bivalves of the genus Xylophaga played a key role in the degradation of the wood logs, facilitating the development of anoxic zones and anaerobic microbial processes such as sulfate reduction. Fauna and bacteria associated with the wood included types reported from other deep-sea habitats including chemosynthetic ecosystems, confirming the potential role of large organic food falls as biodiversity hot spots and stepping stones for vent and seep communities. Specific bacterial communities developed on and around the wood falls within one year and were distinct from freshly submerged wood and background sediments. These included sulfate-reducing and cellulolytic bacterial taxa, which are likely to play an important role in the utilization of wood by chemosynthetic life and other deep-sea animals

Read More