Five organisms with real super powers that rival their comic book counterparts

Andrew ThumbThere is no force more creative than the painstakingly slow process of evolution. Ever wanted to walk through walls? Naked mole rats can physically bore through concrete. How about fly? There are a couple dozen different ways to accomplish that goal, even if you’re a squid. Incredible power of regeneration? Flatworms, roundworms, and echinoderms have us beat. Among the vertebrates, species like the axolotl can regrow limbs, organs, and parts of their brain. For practically every super power we can imagine, something on the tree of life has come up with a real-world analog.

Some real super power are more super than others:

1. The immortal rotifer that absorbs the abilities of anything it touches.

Bdelloid Rotifers. photo by Diego Fontaneto

Bdelloid Rotifers. photo by Diego Fontaneto

Around 80 million years ago, a small, unassuming group of metazoa decided that sex just wasn’t for them. Instead of going through the effort of recombining their genetic material with a mate every generation to produce a viable offspring with a roughly 50% contribution from each parent, Bdelloid Rotifers started reproducing asexually. Males completely disappeared from class bdelloidea, leaving females to generate genetic duplicates through parthenogenesis. This is not their super power.

Bdelloid rotifers are incredibly tough. When environmental conditions are less than favorable, they can enter a dormant state. In this dormant state,they can survive the worst unscathed. Dehydrated, they can endure extreme temperatures, drought, even ionizing radiation. A bdelloid rotifer in its dormant state can even survive in space. If that isn’t enough, while dormant, these rotifers continue to produce offspring, which also remain  dormant. This is not their super power.

Bdelloid rotifers’ super power appears when they recover from their dormant state. As they rehydrate and repair whatever damage their cells incurred, they incorporate DNA fragments from their environment. This includes partially digested food and any DNA in close proximity to them, even bacterial and archael DNA. It is this ability that allows bdelloid rotifers to overcome the limitations of asexual reproduction and survive for 80 million years without mates. They can literally absorb the attributes of those around them.

Their incredible toughness, celibate lifestyle, and ability to absorb the powers of anything they touch, put Bdelloid Rotifers firmly on par with X-Men perennial favorite: Rogue.

Read More

Meet WormCam

Technology in water? That seems a bit counter-intuitive  doesn’t it? Well, Dr. Kersey Sturdivant, during his undergraduate and graduate years, denied the golden rule of electronics and submerged a video camera under water. But this is not your typical Canon Powershot D10.

This is WormCam.

Side profile of WormCam. Photo by Lucy Ma

Side profile of WormCam. Photo by Lucy Ma

As much as I love thumbing through magazines and flipping page after page of vibrant underwater pictures of colorful flora and fauna, WormCam skips the excess and gets right to the bottom. Literally.

The video camera, modified from your average security camera, is set at certain time intervals and takes still pictures, as opposed to recording a video, for technical reasons. WormCam unveils the under-sediment realm. The images are not of mystical jellyfish and elegant fish nor the teeming micro and macro-zooplankton; rather the camera captures worms, crabs, snails and all things benthic.

WormCam, a dense yet delicate technology, is encased within a waterproof, blade-shaped prism, which is attached to the side of a larger  platform. The lead battery, also in a waterproof case, sits on top of the rectangular prism. Linking the two components together with a waterproof wire, WormCam is complete and ready to be deployed.

Back view of deployed WormCam. Photo by Lucy Ma

Back view of deployed WormCam. Photo by Lucy Ma

Depending on the depth of the water, WormCam can either be deployed by hand in shallow waters or by rope in deeper waters. When held horizontally, the prism, where the camera is housed, protrudes below the bottom of the platform. Strategically designed, WormCam inserts itself within the sediment like a spoon sinking into yogurt. The camera is then peeking halfway beneath and halfway above the sediment. Through the clear, plexi-glass window, the camera snaps images of the water-sediment interface.

Now, Dr. Sturdivant, other scientists and aspiring undergraduates can observe the happenings at the sediment-water interface for extended periods of time. You can too! Watch a movie from a WormCam deployed in the York River (if you look closely, the grooves in the sediments are worms wiggling around!).

 httpv://www.youtube.com/watch?v=smkT9sR3fyY

But the seafloor is stereotypically dark and unattractive. Why is this important and why should we care?

Having the ability to observe sediment changes and sediment-organism interactions over time offers marine scientists an enormous advantage. For example, during eutrophication, the phytoplankton bloom is incredibly obvious, thanks to the single-celled organisms’ conspicuous chlorophyll. Studies have confirmed that fish and other organisms die because of the lack of oxygen, but what about the worms and other sea-dwelling creatures that live beneath our scope of vision? WormCam widens this limited scope. With WormCam, scientists can then begin to understand these silent creatures and their roles in the aquatic ecosystem. Bioturbation in a Declining Oxygen Environment, in situ Observations from WormCam offers more technical information on the application of WormCam.

Thus far, WormCam has been deployed off of the Chesapeake Bay, Gulf of Mexico and Pivers Island. Each location has offered a benthic perspective on what is happening on and beneath the seafloor in the least intrusive way as possible. For example, the deployed WormCam off of the Gulf of Mexico has facilitated scientists’ understanding of the effects of Deepwater Horizon oil spill on sediment and benthic organisms.

Currently, Dr. Sturdivant and I, one of the aspiring undergraduates, have deployed a WormCam off of Pivers Island. We want to understand how chemical cues from gastropods affect crustacean behavior as well as how the attracted crustaceans impact other species residing in the sediment. Some very interesting observations have been made, but there is more to come. It’s a good thing that WormCam has its very own twitter page. Follow @wormcam.


Lucy Ma is an undergraduate who participated in a blog writing workshop led by Andrew Thaler. She works with Dr. Sturdivant on WormCam.

Epilogue to the Return of the Science of Aquaman: Costume Palettes at Depth

In response to yesterday’s review of Aquaman Volume 1: The Trench, Al Dove made a simple request via twitter:

Your next post should be "What would aquaman look like at different depths?"

Your next post should be “What would aquaman look like at different depths?”

This question is more complex than it first appears, and needs a little unpacking. Water is denser than air. When light passes through, the water acts as a filter, absorbing visible light in a predictable pattern from longest wavelengths (infrareds and reds) to shortest wavelengths (purples and ultraviolets). As Aquaman dives deeper, the brilliant colors of his orange and green costume will begin to fade.

Read More

Tweets from the American Elasmobranch Society: Elasmobranch Ecology

The American Elasmobranch Society is a non-profit professional society focusing on the scientific study and conservation of sharks, skates, and rays. AES members meet each year in a different North American city, and this meeting is the world’s largest annual gathering of shark scientists. AES recently met in Vancouver, British Columbia for the 2012 meeting, and for the first time the event was live-tweeted by meeting attendees, including myself. I’ve organized the best conference tweets by session using Storify. If anyone has any questions or comments about the research presented below, please feel free to share it in the comments section of this blog post.

Here are selected tweets from the Elasmobranch Ecology sessions.

Read More

A selection of primary literature on the ecology of deep-sea hydrothermal vents in Manus Basin

Deep-sea mining is once again in the news. As Kevin Zelnio frustratingly points out on twitter, news articles often fail to mention the primary research that has been conducted at these sites or make more than a cursory statement concerning their ecology. This has the effect of marginalizing an entire ecosystem and makes it difficult for the public to grasp the richness and diversity of deep-sea hydrothermal vent communities, some of which may face commercial exploitation. Here is a selection of recent primary literature, with abstracts, on the ecology of deep-sea hydrothermal vents at the center of the mining debate, Manus Basin (you may recognize some of the authors).

Read More

The importance of being Aquaman, or how to save the Atlantean from his briny fate

Aquaman has an unpleasant lunch. From New 52 Aquaman #1

Aquaman has an unpleasant lunch. From New 52 Aquaman #1 DC Comics.

Two weeks ago, I challenged the world to consider how the greatest hero in the DC Universe would fair if forced to survive in the real world. The result was a hypothermic, brain-dead lump of jerky with brittle bones forced to suffer through constant screams of agony even as he consumes sea life at a rate that would impress Galactus. In short, the ocean is a rough place, even for Aquaman.

Since that post made its way across the internet, several people have asked me to discuss what adaptations Aquaman would need to survive in this, science-based, ocean. So I went back to my comic books and my textbooks to assemble an Aquaman with a suite of evolutionary adaptations that would allow a largely humanoid organism to rule the waves, trident triumphantly raised.

Read More

Carnivorous plants respond to increased soil nitrogen, eco-news websites completely miss the point

Flowers of a venus flytrap. Photo by Andrew David Thaler.

Flowers of a venus flytrap. Photo by Andrew David Thaler.

Late last week, inspired by our newly flowering Venus Flytraps, I posted pictures of Amy and my carnivorous plant collection on twitter and on the Southern Fried Science Facebook page. After David’s recent post on a nurse shark that underwent major dietary changes following traumatic surgery and captivity, our wonderful readers must have been on high alert for trophic shifts following anthropogenic disturbance-type articles (or, more casually, “stuff that eats stuff now eats different stuff”), because this morning my inbox was filled with links to variations on the following article: Pollution makes carnivorous plants go vegetarian. Whenever human activity alters trophic interactions, there is potential for major ecological changes in an ecosystem. While ecosystems are dynamic, shape by continuous variation in community structure and resource and habitat variability, rapid changes can result in total collapse or permanent shifts to functional states.

Unfortunately, these “eating different stuff” articles rarely reflect the deep and nuance ecologic reality of trophic interactions and instead capitalize on the narrative of “even animals are going veggie to save the planet!” Allow me to revel in my cultural roots with a hearty “Oy vey!”

Read More

Beneath the Broken Ice: Playing with Mud

Megumi Shimizu is a graduate student aboard the RVIB Nathaniel B. Palmer to collect sediment samples near Antarctic Peninsula as a part of the LARISSA project. She is interested in microorganisms and biogeochemistry of marine sediments; how the metabolism of microorganisms interact with the surrounding environment and the chemical components in sediments. See her first update here.


Are you playing with mud on the research vessel?

Some people on the ship joked when they saw me processing my sediment core. Yes, I’m playing with mud in Antarctica. Sampling sediments can tell us a lot, not only what happened across geologic time scales, but also what kind of organisms are living in the sediment, microbiology, and the geochemical conditions. We are serious about collecting mud and playing with mud.

upper panel: the entire view of glove box, lower panel: Liz Bucceri working on sediment sample processing in glove box. Photo by Megumi Shimizu

upper panel: the entire view of glove box, lower panel: Liz Bucceri working on sediment sample processing in glove box. Photo by Megumi Shimizu

Nathaniel B. Palmer has three pieces of equipment to collect sediment; the megacore, kasten core, and jumbo piston core. The length you can reach below seafloor is different, 40cm, 1.5 to 6m and 24m respectively. Megacore is more suitable for biological studies since it preserves the sediment-water interface better than kasten core and jumbo piston core. Geological studies prefer Kasten core and jumbo piston core so that they can get older data from the sediment.

For my microbial lipid biomarker study, I’m taking samples from the megacore and kasten core. Along with microbial lipid and DNA, our team is collecting sediment and porewater (the water in pore spaces of sediments) to analyze geochemical properties of sediments, such as methane, sulfate, sulfide, and dissolved inorganic carbon. To maintain the condition of the sediments as close as the real environment, the sediment cores are processed under the condition of cold (~0C degree) and anoxic (no oxygen). How to make that condition? We have a special room called “The Little Antarctica”, on the ship, which is a big refrigerator containing glove box. A glove box is the transparent container with two pairs of gloves. The inside of the box is kept practically anoxic (less than 1% of oxygen. Atmospheric oxygen is ~20%).

Read More

Beneath the Broken Ice: Megumi Shimizu on the 2012 LARISSA Campaign to the Antarctic Peninsula

Megumi Shimizu is a graduate student studying microorganisms in marine sediment. She is currently on board the RVIB Nathaniel B. Palmer exploring seafloor communities in a once ice-covered region beneath the Larsen Ice Shelf. Over the next month, she will be updating us from the field.


The RVIB Nathaniel B. Palmer. photo by Megumi Shimizu

The RVIB Nathaniel B. Palmer. photo by Megumi Shimizu

I’m a PhD student interested in microorganisms and biogeochemistry of marine sediments; how the metabolisms of microorganisms interacting with the surrounding environment, the chemical components in sediments. Microorganisms in subseafloor are universally important because of its large biomass. It is said 50% of prokaryotes are living under the seafloor. This biomass makes large carbon and nutrients reservoir, which are important in biogeochemical cycle. For example, microorganisms play the role of organic carbon decomposition in sediments, as a result, carbon dioxide and methane are produced. In contrast, carbon dioxide and methane are also consumed by microorganisms called chemolithotrophs and methanotrophs in sediments. Therefore, understanding microorganisms in sediments; who they are, what are they doing, is important to reveal the details of global biogeochemical cycle and accurate estimate of budgets (amount of elements converted to different forms of chemicals for example, amount of carbon dioxide converted into organic carbon by carbon fixation). In addition, how microbial community response to environmental changes such as climate warming is also important in terms of the influence of global elemental cycles.

Read More