Skip to content

Southern Fried Science

Over 15 years of ocean science and conservation online

  • Home
  • About SFS
  • Authors
  • Support SFS

Sharks, Squalene, and a SARS-CoV-2 vaccine

Posted on October 16, 2020January 4, 2021 By Catherine Macdonald
Uncategorized
A bluntnose sixgill shark (Hexanchus griseus). Photo credit: NOAA Ship Okeanos Explorer.

Hi, friends at Southern Fried Science!

You’ve probably seen in the media lately that there’s been a lot of coverage about whether sharks are being killed for SARS-CoV-2 vaccines. With an awesome undergraduate co-author, I’ve tried to gather some facts about what is happening (or might happen) and what it means. You can read a preprint of that work here, or read on for a short FAQ in plain English.

 Is there really shark in vaccines?

In some of them, yes. Squalene is derived from shark liver oil, and is an ingredient in adjuvants used in a previous commercially available flu vaccine as well as several vaccines currently being tested for SARS-CoV-2. Adjuvants make vaccines work better (by promoting a stronger immune response) and reduce the amount of antigen required for each vaccine dose, allowing them to be manufactured more rapidly.

Will it really take 500,000 sharks to vaccinate everyone during the pandemic?

No—it’s a “worst case scenario” estimate based on the assumption that we’ll be vaccinating 7.8 billion people twice (15.6 billion doses, 10 mg squalene/dose) and that it takes 2,500-3,000 sharks to generate a ton of squalene. 500,000 sharks falls within a plausible range if that were actually what we were going to do, but it isn’t (because it’s unlikely that only one vaccine candidate will succeed, or if it did, that it will also be one that contains squalene–and because sadly, everyone on earth isn’t likely to have access to a vaccine anytime soon).

Even if these assumptions all turned out to be accurate, a specific number of sharks needed is difficult to estimate with any meaningful precision, because we know that shark species vary substantially not just in size, but in the proportion of their body mass made up of liver, the amount of oil their livers contain, and how much of that oil is squalene. Based on fairly moderate assumptions about yield for each of those variables, it would take about 365,385 “average-sized” sharks to generate the amount of squalene needed for 15.6 billion doses. But across the different yield variables and shark sizes, the range of estimates becomes so large it feels meaningless.

What does this all mean for shark conservation?

It really depends. The required amount of squalene could easily be harvested from existing shark fisheries (which catch an estimated 100 million sharks a year). If we started saving instead of discarding livers from sharks that are already being caught for their fins or meat, the use of those livers in vaccines wouldn’t have much effect on shark populations at all. On the other hand, deep-sea sharks are historically a preferred source of liver oil (they are more likely to provide high yields because of biological adaptations to living in the deep-sea). If demand led to increased targeting of deep-sea sharks–which are understudied and generally very vulnerable to overfishing–that could have serious conservation consequences for targeted species. So the question of whether demand for squalene for vaccines is a conservation problem depends a lot more on how that demand is being met than on the total number of sharks required.

What alternatives do we have?

We can derive chemically identical squalene from plant sources, and at least at the moment, wholesale prices for plant- and shark-derived squalene are very similar. It seems like a good idea to encourage an infrastructure shift towards sustainable plant-based sources rather than relying for medical purposes on shark fisheries, since many are undermanaged or unsustainable, making access vulnerable to population collapses or changes in regulation. If we are going to continue to rely on shark-derived squalene, we should ask for clarity and specificity from pharmaceutical companies about their supply chains, the species being harvested for use in vaccines, and the sustainability of that harvest.

Shouldn’t human life come first in a pandemic?

I think this is a false choice. The FDA doesn’t actually care where squalene comes from (plants or sharks) because the squalene itself (C₃₀H₅₀) is chemically identical; pharmaceutical companies order it by CAS registry number based on chemical composition, not origin. Regulations require that component lots be “tested for conformity with all appropriate written specifications for purity, strength, and quality” (21 C.F.R. § 211.84 (2019)). Assuming plant-derived squalene meets those standards (and we know it can) it can easily be substituted for shark-derived squalene because as far as the regulations are concerned, they’re the same thing. Environmental sustainability and human health goals are not necessarily in opposition, and there’s nothing wrong with wanting to make choices which support the well-being of both people and sharks.

You can read more coverage of this topic and research in Forbes and the New York Times, or by reading the preprint itself.

—

A note to my friends in epidemiology or shark science: if you have information or sources you are willing to direct me to which you think are relevant to improving or clarifying this work, or would like to point out an angle I should consider, please feel invited to reach out (catherine.macdonald@rsmas.miami.edu). The best thing about a preprint is that it leaves a lot of space for our community to help improve the quality or usefulness of research before a finalized version is published!

Share this:

  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on Threads (Opens in new window) Threads
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

Tags: squalene

Post navigation

❮ Previous Post: Hot air for windmills, oceans get layered, and North Korean ghost ships – What’s up with the Oceans this Week
Next Post: The United States moves towards exploration and exploitation of critical mineral resources in the deep ocean. ❯

You may also like

Science
Misunderstood Marine Life # 4 – The healing power of sharks
October 5, 2011

Popular Posts

Shark scientists want their research to help save threatened species, but don’t know how. Our new paper can help.Shark scientists want their research to help save threatened species, but don’t know how. Our new paper can help.December 1, 2025David Shiffman
Norway and Cook Islands put their deep-sea mining plans on pause.Norway and Cook Islands put their deep-sea mining plans on pause.December 3, 2025Andrew Thaler
What Ocean Ramsey does is not shark science or conservation: some brief thoughts on "the Shark Whisperer" documentaryWhat Ocean Ramsey does is not shark science or conservation: some brief thoughts on "the Shark Whisperer" documentaryJuly 2, 2025David Shiffman
The Trouble with Teacup PigsThe Trouble with Teacup PigsOctober 14, 2012Andrew Thaler
What we know we don't know: impacts of deep-sea mining on whales, dolphins, sharks, turtles, and other migratory species.What we know we don't know: impacts of deep-sea mining on whales, dolphins, sharks, turtles, and other migratory species.November 20, 2025Andrew Thaler
2025: My year in writing, public speaking, and media interviews2025: My year in writing, public speaking, and media interviewsDecember 3, 2025David Shiffman
Urea and Shark OsmoregulationUrea and Shark OsmoregulationNovember 15, 2010David Shiffman
Shark of Darkness: Wrath of Submarine is a fake documentaryShark of Darkness: Wrath of Submarine is a fake documentaryAugust 10, 2014Michelle Jewell
How tiny satellites are tracking marine wildlifeDecember 1, 2025Andrew Thaler
Build a dirt cheap, tough-as-nails field computer in a Pelican caseBuild a dirt cheap, tough-as-nails field computer in a Pelican caseJuly 21, 2015Andrew Thaler
Subscribe to our RSS Feed for updates whenever new articles are published.

We recommend Feedly for RSS management. It's like Google Reader, except it still exists.

Southern Fried Science

  • Home
  • About SFS
  • Authors
  • Support SFS


If you enjoy Southern Fried Science, consider contributing to our Patreon campaign.

Copyright © 2025 Southern Fried Science.

Theme: Oceanly Premium by ScriptsTown