A sea turtle robot looking fearsome on a blue background.

I built a horrifying cyborg sea turtle hatchling so you can learn a little bit about behavioral ecology

Sea turtles, in case you didn’t know, are pretty great. These giant marine reptiles have been chilling out in the ocean for over 100 million years, largely unchanged. But their evolutionary foray onto land along with the rest of the tetrapods (a move largely regarded as a mistake by most extant species) left them with one one critical vulnerability: they have to return to land to lay their eggs, and their hatchlings must survive a grueling march to the sea within minutes of emerging into the world.

To find their way back to the sea, sea turtle hatchlings emerge from their nests in the darkness and track light cues on the horizon, tracking the glow of starlight on waves. This becomes a huge problem when the beach is littered with the pollution of artificial lights, leading hatchlings away from the sea and towards streets, resorts, and beachfront bars. Light pollution is such a serious problem for sea turtle survival, that many municipalities which host turtle nesting beaches ban the use of superfluous lighting during nesting season. 

Protecting sea turtle nests and nesting sea turtles, particularly the massive, primordial leatherback sea turtle, is a core mission of the Dominica Sea Turtle Conservation Organization (DomSetCO). Leatherbacks are exceptionally sensitive to light. On the top of their heads is a translucent patch of skin directly above the pineal gland. This window to the turtle’s brain serves as a rudimentary third eye which can sense how light changes.

You can help support DomSetCO by donating to our campaign to build the Rosalie Conservation Center, a hybrid rum distillery, fish hatchery, and conservation center in Dominica. Drink rum, save turtles. 

Read More

Build Your Own 3D-printed Ring Light to Upgrade Your Remote Meetings

We are entering year two of pandemic lockdowns and remote meetings, teach from home classes, and teleconferences are hear to stay. Early last year we addressed some of the basics of perfecting a decent space for teaching from home: The true, essential, and definitive guide to looking like a professional while teaching from home.

But some folks want a little extra edge, a little something that dramatically improves how you look in the camera while teaching your class, giving a talk, or holding a meeting. And not just because of vanity. The better and clearer your camera image, the easier it is for your audience to see and understand you (though vanity is a perfectly fine reason too, we have all spent far too much time this year staring at ourselves in the little Zoom box).

You could buy a ring light to provide the best possible light source for looking good on a webcam, but why buy something when you can spend several hours soldering and coding your own custom, addressable, RGBW ring light.

The good nerds at Southern Fried Science are here for you. I spent the last month polishing up my coding, soldering, design, and 3D-printing skills to bring you a 3D-printed, DIY ring light that you can build and code yourself.

Is it cheaper than a commercial ring light? No.

Does it work better than a ring light designed and manufactured by a professional team of engineers? Also no.

Can you independently control each color channel so it looks like you’re in the Matrix, under water, of cosplaying the This Is Fine dog via a large, bulky box that sits on you desk? Yes.

Does it come with a panic button that lets you bail out of Zoom calls by pretending that you’re being pulled over by the police? You better believe it does.

Read More

3 kid-friendly STEAM electronics projects that harness NOAA’s massive public databases

This is the winter of finding as many good, educational projects to keep our kids as occupied as possible. If you’re anything like me, you probably have a stack of assorted electronics in various stages of disrepair, which is great for your hardware hacking dads and moms, but kids need projects with a little more structure and, especially for the younger ones, a lot less soldering.

We can’t build open-source CTDs every day.

Fortunately, the awesome folks at Adafruit have built up an absolutely massive collection of electronics projects using just about every component you can imagine. I’ve culled through the archive to find three kid-friendly (projects that don’t require soldering or involve particularly risky components) ocean and weather projects that take advantage of NOAA’s publicly available databases to help students learn a little bit about electronics and the natural world.

All of these projects were built with the help of my kiddo (age four), require no soldering or electronics skills to start, involve just enough coding to stay interesting, and use Adafruit’s CircuitPython ecosystem, which is fairly easy to learn. Adafruit does a great job compiling detailed instruction for every project. These can all be completed in a lazy afternoon.

Read More