Skip to content

Southern Fried Science

Over 15 years of ocean science and conservation online

  • Home
  • About SFS
  • Authors
  • Support SFS

Beyond the Edge of the Plume: understanding environmental impacts of deep-sea mining

Posted on July 21, 2014July 21, 2014 By Andrew Thaler 1 Comment on Beyond the Edge of the Plume: understanding environmental impacts of deep-sea mining
Conservation, Science
Ifremeria nautilei from the Manus Basin. Source: MARUM
Ifremeria nautilei from the Manus Basin. Source: MARUM

The mining of deep-sea hydrothermal vents for gold, copper, and other precious metals, is imminent. Over the last seven years I’ve worked with industry, academia, and international regulatory agencies to help craft guidelines for conducting environmental impact studies and assess the connectivity and resilience of deep-sea ecosystems. Deep-sea mining, particularly at hydrothermal vents, is a complicated endeavor. As an ecologist and environmentalist, I’d like to see all deep-sea ecosystems receive extraordinary levels of protection. As a pragmatist and someone who recognizes that access to technology is a human right, I realize that demand for essential resources like copper, cobalt, and rare earth elements is only going to increase.

Mining a deep-sea hydrothermal vent presents a conundrum. Across the world, vents vary in their longevity and proximity to each other. A fast spreading center like those found in western Pacific back-arc basins, can have numerous, densely packed vents that persist for tens of years. In contrast, ultra-slow spreading centers, like the central Indian Ridge, may have a few, sparsely distributed vents that remain active for centuries. The sustainability of deep-sea mining is completely dependent on the type of vents being mined. Vents in slow spreading centers may never recover from any anthropogenic impact, while those in fast spreading centers could be extremely resilient to the disturbance caused by mining.

Vents, especially vents in fast spreading centers, are extremely dynamic. The ecosystems that surround these hydrothermal vents have evolved to endure catastrophic disturbance on a decadal time scale. When I think about deep-sea mining, the question that matters most to me is: Is the disturbance caused by an extractive industry greater than the natural disturbance experienced by these system? One of the ways to work towards answering that question is: When we look at populations native to these systems, how isolated are they?

Through my research, I’ve attempted to answer that question with some of the dominant species from deep-sea vents in the western Pacific. For a broad swath of vent creatures, including barnacles, we see a surprising lack of population structure–that is, individuals from distant sites all appear to come from the same genetic stock; they are intermingling and interbreeding across vast spatial distances. In one particularly iconic species, Ifremeria nautilei–a fist-sized snail that lives right next to the hydrothermal vent plume–we looked at the entire known range of the species and only found evidence of genetic subdivision across thousands of kilometers. Within discrete back-arc basins, there was ever only a single well-connected population.

This sounds like a good thing for vents threatened by mining. If there is not population subdivision, than the population as a whole is more resilient to disturbance, critical genetic diversity is distributed throughout the population rather than concentrated in a few scattered and vulnerable groups. Recovery following extraction is more likely if there is a large, broadly distributed population that new recruits can be drawn from. And, if there is no recovery, if a post-mining vent site never returns to life, unique populations won’t be lost.

For my most recent paper, published last week in PLOS One, we looked beyond the vent plume to further our understanding of population structure at western Pacific hydrothermal vents. First, we examined Chorocaris sp. 2–a hydrothermal vent-dependent shrimp that, unlike all other species examined from these site to date, is highly mobile We complemented this with an investigation into Munidopsis lauensis–an opportunistic squat lobster that hangs out near vents, where food is abundant, but is also found elsewhere throughout the deep-sea. Squat lobsters like Munidopsis are part of the vent halo fauna, animals that aren’t directly dependent on vents to survive, but exploit these biomass rich regions. Halo fauna are often dismissed as being part of the general, homogeneous background.

Chorocaris behaved exactly like we expected, with one big population distributed throughout a single basin and genetic sub-division happening only over thousands of kilometers.

Munidopsis, however, was a shock. At the very outset of this research adventure, we hypothesized that the species most dependent on hydrothermal vents for survival would have the strongest signals of population structure–species that needed vents would become locally entrained–but that was not the case. In retrospect, it makes sense. If you need to find fresh vents to colonize, you have to be able to broadcast the next generation of a wide distance in the hopes that a few would find another vent and settle out. So we were working under the hypothesis that there would be very little local structure among any species. The vent-dependent species had to disperse broadly and the halo fauna didn’t have major drivers for local differentiation. If anything, isolation-by-distance would be the ultimate trend.

This was not the case. When we looked at Munidopsis, we found discrete populations separated by less than 2.5 kilometers and the signal for isolation was incredibly strong. Here was a background species, one that was supposed to be able to opportunistically move between vents, yet it apparently settled within a single vent field and remained there, generation after generation.

So what does this mean for deep-sea vent mining? In this specific case, it means that a loss of locally a differentiated population will result in the permanent loss of unique genetic diversity. How important that diversity is to the species is as-yet undetermined. More broadly, it means that we’ve been thinking about conservation at these hydrothermal vents backwards. The iconic, biomass dominant, vent-dependent species are likely resilient enough to survive a moderate degree of anthropogenic disturbance. It’s the background fauna, the animals that aren’t exposed to catastrophic disturbance as vents shut down on a decadal time scale, that may take the brunt of environmental insult.

So how should this kind of information inform deep-sea mining? Going back to the beginning, it’s not just whether or not disturbance occurs, but whether anthropogenic disturbance exceeds the natural disturbance of a system. Vent-dependent organisms clearly experience more disturbance than non-vent species that are opportunistic in their colonization of vent systems. Because relative frequency of disturbance matters, mitigation at mining sites is dependent on ongoing monitoring of at-risk species and rapid response to changes in community and population structure. Spreading out the insult so that a single population does not experience the entirety of the disturbance all at once is also paramount. And finally, acceptable set-asides that act as reservoirs for genetic diversity can provide a buffer against catastrophic loss.

These are not insurmountable challenges, and I continue to remain hopeful that science, conservation, and industry can work together to shape the practices of the nascent industry to minimize, monitor, and mitigate the environmental impacts of deep-sea mining.

Share this:

  • Click to share on Bluesky (Opens in new window) Bluesky
  • Click to share on Facebook (Opens in new window) Facebook
  • Click to share on Reddit (Opens in new window) Reddit
  • Click to share on Threads (Opens in new window) Threads
  • Click to share on WhatsApp (Opens in new window) WhatsApp
  • Click to share on Mastodon (Opens in new window) Mastodon

Related

Tags: Chorocaris deep-sea mining Ifremeria nautilei Munidopsis

Post navigation

❮ Previous Post: Fun Science FRIEDay – Fasting Fights Cancer?
Next Post: Cascading planetary-wide ecosystem effects of the extirpation of apex predatory Krayt dragons on Tatooine ❯

You may also like

Weekly Salvage
Alvin dives for early-career scientists, join me in the Marianas Islands, stump a scientist, embraces MPAs, and more! Tuesday (?) Morning Salvage: April 17, 2018
April 17, 2018
Popular Culture
John Oliver covers Deep-sea Mining on Last Week Tonight
June 13, 2024
Weekly Salvage
Save our Marine Monuments, replace confederates with ocean animals, worlds of plastic, and more! Monday Morning Salvage: July 31, 2017
July 31, 2017
Weekly Salvage
Hacking Extinction, fishing for hagfish, itchy crabs, clam cavalcades, and more! Monday Morning Salvage: June 4, 2018
June 4, 2018

One thought on “Beyond the Edge of the Plume: understanding environmental impacts of deep-sea mining”

  1. Matt Herod says:
    July 21, 2014 at 4:35 pm

    Great article! One thing I would like to add is that most biological diversity is clustered around active vents, at least this is my understanding, therefore, the key to mining with minimal impact is to try to find extinct vents that no longer support such a large degree of ecological diversity. That way it would be possible to mine all the great sulphides that are deposited in a vent system without disturbing the ecology of active vents. Extinct vents far outnumber active ones but the catch is that finding extinct vents is very, very difficult since they don’t give off the nice geochemical signatures that active ones do.

Comments are closed.

Popular Posts

Shark scientists want their research to help save threatened species, but don’t know how. Our new paper can help.Shark scientists want their research to help save threatened species, but don’t know how. Our new paper can help.December 1, 2025David Shiffman
Norway and Cook Islands put their deep-sea mining plans on pause.Norway and Cook Islands put their deep-sea mining plans on pause.December 3, 2025Andrew Thaler
What Ocean Ramsey does is not shark science or conservation: some brief thoughts on "the Shark Whisperer" documentaryWhat Ocean Ramsey does is not shark science or conservation: some brief thoughts on "the Shark Whisperer" documentaryJuly 2, 2025David Shiffman
What we know we don't know: impacts of deep-sea mining on whales, dolphins, sharks, turtles, and other migratory species.What we know we don't know: impacts of deep-sea mining on whales, dolphins, sharks, turtles, and other migratory species.November 20, 2025Andrew Thaler
2025: My year in writing, public speaking, and media interviews2025: My year in writing, public speaking, and media interviewsDecember 3, 2025David Shiffman
The Trouble with Teacup PigsThe Trouble with Teacup PigsOctober 14, 2012Andrew Thaler
Urea and Shark OsmoregulationUrea and Shark OsmoregulationNovember 15, 2010David Shiffman
How tiny satellites are tracking marine wildlifeDecember 1, 2025Andrew Thaler
Shark of Darkness: Wrath of Submarine is a fake documentaryShark of Darkness: Wrath of Submarine is a fake documentaryAugust 10, 2014Michelle Jewell
Quick Tips for Graduate Student Life - Write a Book ReviewJanuary 23, 2014Andrew Thaler
Subscribe to our RSS Feed for updates whenever new articles are published.

We recommend Feedly for RSS management. It's like Google Reader, except it still exists.

Southern Fried Science

  • Home
  • About SFS
  • Authors
  • Support SFS


If you enjoy Southern Fried Science, consider contributing to our Patreon campaign.

Copyright © 2025 Southern Fried Science.

Theme: Oceanly Premium by ScriptsTown