Woodworking off the grid: upgrades to my DIY solar workshop

Two years ago, I set out on a little mission: to build an off-grid solar array that would power my woodshop. This array needed to charge all my cordless batteries, but also drive my table saw, miter saw, circular saw, and the big router on my slab flattening jig. But there was a catch. The entire system could cost no more than one American Recovery Act stimulus check. 

That first build can be found here: I turned my woodshop into a personal solar farm.

It worked. I beat the heck out of that set up and, other than in the dead of winter when it was too cold for the battery, it could handle most everything I threw at it, pretty well. It wasn’t perfect, and it had some issues with overdrawing, but the safety stops I put in place ensured that when I did push it too hard, it shut itself down rather than compromising components. There were limits, though, as I added bigger tools like a bench planer and started hogging through much tougher stock, I began to run into more and more issues. 

So here we are, 2 years later, with all the upgrades and modifications that I made to my off-grid workshop to keep things running hard. 

Read More

A 3D-printable, drone and ROV-mountable, water sampler

IMG_20150809_160734584_HDRThe Niskin bottle, a seemingly simple tube designed to take water samples at discrete depths, is one of the most important tools of oceanography. Coupled with a CTD, an array of Niskin bottles fit into the rosette, a Voltron-esque amalgamation of everything an oceanographer needs to profile the ocean. Niskin bottles are neither cheap nor particularly easy to use. A commercial rosette requires a decent-sized winch to launch and recover, which means you need a vessel and a crew to deploy. For Rogue Ecologist and citizen scientists, getting a high-quality, discrete water sample is a perpetual challenge. With tools like the OpenROV and the soon-to-be-completed EcoDrone, I wanted a Niskin bottle that was light weight and capable of being mounted on both underwater robots and quadcopters with ease.

Until now. 

After a few months of brainstorming and planning, I sat down this Friday and began building a 3D printable Niskin bottle that could be hand deployed or mounted on an OpenROV or drone. While this version is designed around a 1.25 inch acrylic tube, the trigger mechanism can be expanded to fit any size pipe. The trigger is driven by a waterproof servo developed by the good folks over at OpenROV. Everything else can either be purchased off-the-shelf or printed on you home 3D printer. Later this month, I’ll be taking my prototypes out on the RV Blue Heron for field testing in Lake Superior.

Bill of Materials Read More

Build a dirt cheap, tough-as-nails field computer in a Pelican case

IMG_20150720_233502091For and updated version of the BeagleBox, please go here: The BeagleBox 2: a dirt-cheap, tough-as-nails, 3D-printed, versatile field laptop.

Fieldwork is tough. You’re in the elements, facing wind, rain, and salt spray, sometime on an open boat far out in the Atlantic. You and your gear takes a beating. But you’re out there because there’s science that need to get done.

But your equipment is controlled via computer, and your data entry mandates a computer, which means your precious laptop needs to come with you. For graduate students and early career scientists, this can be a dilemma. I’ve see the calculations happen as my colleagues prepare for the field–do I take my one and only computer out into the field and risk damaging it, or do I leave it brute-force my way through sampling without it. That is, if they’re lucky enough to have alternative methods they can employ. For some gear, there’s no choice but to take the computer.

This equation is, counter-intuitively, getting worse. Our sensors, sampling devices, and scanners are getting cheaper and lighter. Rather than buying a $20,000 piece of equipment, you can get a $20 chip, but there’s a trade off, and the trade off is that chip based systems rely on external processing power, they need a general computer, and that means your laptop is coming with you.

I don’t like going out on the water with my laptop. Losing it would be frustrating and time consuming. It’s tough, but it’s not tough-as-nails. And it’s definitely not cheap.

So I tapped into the wealth of Maker experience I’ve accumulated over the last few years and build a new one, using a single board computer, some extra peripherals, and a 3D printer. And I shoved the whole thing into a Pelican case. Say hello to the BeagleBox, a dirt cheap, tough-as-nails field computer for about $200.

Read More

Meet Sea Leveler: the open source water level gauge that wants you to talk about #sealevelrise

headshot-thalerSMALL

The Sea Leveler, an open source water level gauge that measures activity on twitter.

The Sea Leveler, an open source, arduino-powered, water level gauge that measures activity on twitter.

Two weeks ago, a machine was left on the “free” table at my lab that surprised me–a beautiful stainless steel mechanical water level gauge, on of those old ones with a flywheel in the back that drives the mechanism. Seeing this made me realize that there must be thousands of old scientific devices rusting away in laboratories across the country, obsolete but too well-build to just be thrown out. Then, I thought, there must be some way to take these old tools, some of them elegant, hand crafted works of industrial art, and give them a second life. For Science Online Oceans, I proposed a section on “Hacking the Ocean” developing low-cost, DIY instrumentation to make oceanography accessible to a broader community, but could that work the other way? Can we harness that same maker mentality to take abandoned scientific instrumentation and turn them into tools for education and outreach, or create art through instrumentation?

So I built the Sea Leveler.

Read More