Trump’s 2020 Budget will be a Disaster for America’s Coastal Economies

Yesterday the Trump Administration unveiled its proposed budget for fiscal year 2020. This budget contains steep cuts research, education, and social services in order to fund the construction of the border wall. Chief among the cuts is an unprecedented reduction in funding for NOAA, which functionally disbands several core research programs within Ocean Services. From A Budget for a Better America:

“The Budget also proposes to eliminate funding for several lower priority NOAA grant and education programs, including Sea Grant, Coastal Zone Management Grants, and the Pacific Coastal Salmon Recovery Fund.”

A Budget for a Better America, page 21

Rumblings on the hill suggest that Secretary of Commerce Wilbur Ross plans to unveil his own plan to drastically reduce the budget of the National Oceanic and Atmospheric Administration and permanently hamstring NOAA in furtherance of the Administration’s goal to find funding to construct a wall on the US southern border.

These cuts include zeroing out the budget for the following agencies and programs:

  • NOAA SeaGrant
  • NOAA Coastal Zone Management Program
  • National Centers for Coastal Ocean Science (NCCOS)
  • Pacific Salmon Restoration Program
  • Potentially at least one fisheries laboratory

These cuts would be catastrophic America’s Coastal Communities and Economies, especially in places like North Carolina, Maryland, and Louisiana.

Read More
A polymetallic nodule from the Clarion Clipperton Fracture Zone, purchased from an online dealer. 

Nodules for sale: tracking the origin of polymetallic nodules from the CCZ on the open market. 

[This article originally appeared yesterday in the Deep-sea Mining Observer. ~Ed.]

You can buy a 5-lb bag of polymetallic nodules from the Clarion-Clipperton Fracture Zone on Amazon, right now.

Depending on your vantage point and how long you’ve participated in the deep-sea mining community, this will either come as a huge surprise or be completely unexceptional. Prior to the formation of the International Seabed Authority, there were no international rules governing the extraction of seafloor resources from the high seas. Multiple nations as well as private companies were engaged in exploration to assess the economic viability of extracting polymetallic nodules and tons of material was recovery from the seafloor for research and analysis. Some of that material almost certainly passed into private hands.

Read More

The next generation open-source, 3D-printable Niskin bottle has arrived!

The Niskin bottle, a seemingly simple device designed to take water samples at discrete depths, is one of the most important tools of oceanography. These precision instruments allow us to bring ocean water back to the surface to study its chemical composition, quality, and biologic constituency. If you want to know how much plastic is circulating in the deep sea, you need a Niskin bottle. If you need to measure chemical-rich plumes in minute detail, you need a Niskin bottle. If you want to use environmental DNA analyses to identify the organisms living in a region of the big blue sea, you need a Niskin bottle.

Niskin bottles are neither cheap nor particularly easy to use. A commercial rosette requires a winch to launch and recover, necessitating both a vessel and a crew to deploy. For informal, unaffiliated, or unfunded researchers, as well as citizen scientists or any researcher working on a tight budget, getting high-quality, discrete water samples is an ongoing challenge.

Read More
Cut rock samples from the Rio Grande Rise show Fe-Mn crusts (black and gray) growing on various types of iron-rich substrate rocks (pale to dark brown). Photo credit: Kira Mizell, USGS.

A lost continent, rich in cobalt crusts, could create a challenging precedent for mineral extraction in the high seas.

[This article originally appeared yesterday in the Deep-sea Mining Observer. ~Ed.]

The Rio Grande Rise is an almost completely unstudied, geologically intriguing, ecologically mysterious, potential lost continent in the deep south Atlantic. And it also hosts dense cobalt-rich crusts.

The Rio Grande Rise is a region of deep-ocean seamounts roughly the area of Iceland in the southwestern Atlantic. It lies west of the Mid-Atlantic Ridge off the coast of South America and near Brazil’s island territories. As the largest oceanic feature on the South American plate, it straddles two microplates. And yet, like much of the southern Atlantic deep sea, it is relatively under sampled.

Almost nothing is known about the ecology or biodiversity of the Rio Grande Rise.

Read More

All the slime that sticks, we print: 2018 in Hagfish Research

Hagfish. You love them. I love them. Of all the fish in all the seas, none are more magnificent than the hagfish. Across the world, children celebrate the hagfish by making slime from Elmer’s glue, their own mucous, or just, like, something. Seriously, how is is that toddler hands are always coated in some strange, unidentifiable slime?

And never, ever forget:

Your car has just been crushed by hagfish: Frequently Asked Questions.

2018 was a big year in hagfish science. Below are just a few of my favorite studies.

Biogeography

A hagfish in the high Antarctic? Hagfish have previously never been observed in the shallow waters around Antarctic, but a photograph from 1988 was determined this year to be a hagfish feeding on a large pile of clam sperm in shallow water. Neat!

Possible hagfish at 30 m in Salmon Bay in 1988. The white patch is Laternula elliptica sperm.

Incidentally, the reason the photo languished for so long is that it was originally though to be a Nemertean. Because Antarctic Nemertean worms are huge and horrifying.

Read More

Fun Science FRIEDay – Gut Enzyme Turns Blood Into Type O

The process of blood transfusions, started in the late 19th century and perfected in the early 20th century, were a big advancement in modern medicine and the treatment of human health. Part of the improvements in this procedure was the discovery of the various blood types in humans, and how that affects how the immune system responds to and “accepts” blood transfusions. Recently, researchers from the University of British Columbia may have found a reliable way to use a bacterial enzyme from the human gut to convert any type of blood into type O – which is compatible with nearly everyone.

Animation of red blood cells (Photo credit: meghanmecrazy)

Read More

Canada announced new marine protected area standards. Here’s how science and conservation professionals reacted.

Recently, the Canadian government released the Final Report of the National Advisory Panel on Marine Protected Area Standards. This report is a set of guidelines and goals for the creation of new marine protected areas in Canada, and comes as Canada is hoping to greatly increase the number and quality of MPAs. I reached out to MPA experts and environmental nonprofits to ask what they think.

Read More

Barndoor skates, once a textbook example of overfishing, have recovered enough to allow fishing

Barndoor skates were once thought to be so overfished that a highly-publicized paper from 1998 noted that they had been “driven to near extinction without anyone noticing.” One of the largest skates, barndoor skates can reach over 5 feet in wingspan, which is large enough that their diet includes small sharks like spiny dogfish; for a skate, that’s about as close as it gets to charismatic megafauna!

Recently, NOAA Fisheries announced that Barndoor skate populations off the Northeastern United States had finally recovered enough that fishing for them could resume. This move comes after a 2009 NOAA Fisheries report showed that the species had begun to recover enough that they could be removed from the species of concern list, though they remained protected at the time. “This is good news,” Mike Ruccio, a Supervisory Fishery Policy Analyst for NOAA Fisheries Greater Atlantic Regional Fisheries Office, told me. “Rebuilding overfished stocks is one of the cornerstones of the US domestic policy on fisheries.”

Read More

What to do after the first fatal shark bite in Massachusetts since 1936: 3 experts respond

Two weeks ago, tragedy struck in New England as a boogie boarder was killed by a great white shark. Though shark bites* in general and fatal shark bites* specifically are incredibly rare (Mr. Medici was the first person killed by a great white shark in Massachusetts waters in 82 years), emotions are running high. Some Cape Cod residents are explicitly calling for a cull (targeted killing) of great white sharks.

Such a cull would be devastating for a recovering but still protected shark species, has been shown not to effectively reduce shark bites, and is opposed by shark experts around the world, but what, if anything, should local governments do instead? I’ve written in the past about alternatives to lethal shark control here and here, but not every solution is applicable for every location; local oceanographic conditions vary, as well as local laws and cultural norms. I reached out to three experts to ask what, if anything, they think should be done here. Here’s what they had to say:

Read More

The rise of low-cost ROVs and community submersibles

The following appeared this Monday on the DSM Observer, the only trade journal committed to covering all aspects of the emerging deep-sea mining industry. Though written for the deep-sea mining community, the subject is broadly relevant to a host of ocean industries, so we reprint it below. 


The submarine Noctiluca cruises across the surface. Photo Courtesy Shanee Stopnitzky.

The submarine Noctiluca cruises across the surface. Photo Courtesy Shanee Stopnitzky.

As a community, we discuss mining, management, and monitoring, as well as the regulations that shape them, in terms of governments, major corporations, and research institutions. The deep-sea mining community is small and the complexities of working at abyssal depths engenders collaboration, cooperation, and, in the case of exploitation, compromise. While there are many stakeholders potentially affected by deep-sea mining, only a small proportion of them will ever directly engage with the deep seafloor.

A few extremely wealthy individuals have access to private submersibles and ROVs and have on occasion made them available for research and exploration, but they are the exception. The tools necessary to reach the depths of a hydrothermal vent or polymetallic nodule field are simply too expensive.

That may soon change.

Read More